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1. INTRODUCTION 

In 2023, Indonesia produced 68.22 million cubic 
meters of roundwood, with acacian wood accounting for 
45.61% of the total industrial forests (Badan Pusat 
Statistik [BPS], 2024). The island of Sumatra primarily 

dominated roundwood production at 46.1 million m3, 
followed by Kalimantan at 12.09 million m3 (BPS, 
2024). In contrast to Sumatra, where acacia wood is 
comprised 62.13% of the total output, Kalimantan was 
dominated by mixed jungle wood types, accounting for 
52% of total output. This trend was underscored by the 
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State of Kalimantan’s production forests, which still rely 
on natural forests as their primary source. Mixed jungle 
wood falls under commercial category one (31 types) 
and commercial category two (55 types; BPS, 2024). 
The wood types outside of these categories were classi-
fied as lesser-known or less commonly used. Lesser- 
known wood types are often overlooked due to their low 
economic value and are not utilized for industrial 
purposes.

Research on lesser-known wood species continues to 
develop to find optimal uses and is expected to replace 
mixed forest wood. Iswanto et al. (2023) showed that 
Lophopetalum sp. wood has potential for development 
as a lightweight construction material and furniture. 
However, this wood has low resistance for termite 
attacks (Class IV). A study by Marbun et al. (2019) on 
four lesser-used wood types, including Octomeles 
sumatrana, Duabanga moluccana, Horsfieldia hellwigii, 
and Artocarpus odoratissimus Blanco, showed that these 
lesser-used wood as a raw material for pulp and paper 
production (Class II Quality; Marbun et al., 2019).

Another study on three lesser-used wood species, 
including Palaquium lanceolatum, Mezzettia leptopoda, 
and Sindora wallichii, indicated that white banana and 
sepetir wood are classified as strength class IV. In 
contrast, nyatoh wood is classified in strength class III 
and is suitable as a raw material for pulp and paper 
(Augustina et al., 2020). However, wood resistance to 
termite attack falls into durability class “0” due to 
damage being approximately 75% (Augustina et al., 
2021). Another study on eight lesser-known wood 
species from five Apocynaceae genera, including E. 
aurantiaca, E. macrocarpa, E. sphaerocarpa, K. flavida, 
L. ternatensis, P. acuminata, P. rubra, and V. foetida 
indicated that the four lesser-known woods species, 
including E. macrocarpa, E. sphaerocarpa, K. flavida, 
and V. foetida are potential raw materials for pulp and 
paper (Quality Class II; Marbun et al., 2023).

These findings suggest that lesser-known wood species 

have potential as raw materials for pulp and paper 
production, respectively. However, as raw materials for 
construction and furniture, additional treatment is nece-
ssary to enhance their resistance to insect attacks. Opti-
mal use of lesser-known wood can be achieved by con-
verting it into other derivative products, one of which is 
wood vinegar.

Wood vinegar is produced from various raw mate-
rials, including apple tree branches (Liu et al., 2021), 
nipah fruit (Oramahi et al., 2022), bamboo vinegar 
(Arsyad et al., 2020), oil palm empty fruit bunches 
(Oramahi et al., 2019), sengon (Albizia chinensis; 
Arsyad et al., 2019; Basri et al., 2023), jelutung wood 
(Dyera lowii Hook; Oramahi et al., 2021), cocoa pod 
shells (Theobroma cacao L.; Desvita et al., 2022), 
apricot kernels, oak wood, and hazelnut shells (Kara et 
al., 2024).

Nurhaida et al. (2025) showed that wood vinegar 
could be used as an anti-termite treatment for particle 
boards. The quality of wood vinegar depends on raw 
material, duration of pyrolysis, and pyrolysis tempe-
rature. In addition, the concentration of wood vinegar 
also affects its effectiveness in inhibiting the growth of 
fungi and serves as an anti-termite agent. Wood vinegar 
contains several active compounds, such as 2-methoxy- 
phenol, 4-ethyl-2-methoxy-phenol, 4-ethyl-2-methoxy- 
phenol, 3,5-dimethoxy-4-hydroxytoluene, and creosol, 
which possess antifungal properties (Suprianto et al., 
2023).

These compounds inhibit the growth of microorga-
nisms, including wood-rotting fungi and wood-destroy-
ing insects like termites. Wood vinegar produced by the 
pyrolysis from various biomass sources has been used as 
an antifungal (Oramahi et al., 2024a; Santoso et al., 
2023), antibacterial (Yıldızlı et al., 2024), anti-termite 
(Nurhaida et al., 2025; Oramahi et al., 2024b), and 
antioxidant (Xue et al., 2022).

To date, no study has investigated the use of Santiria 
griffithii wood to produce wood vinegar. S. griffithii is 
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a lesser-known wood species, and there is little infor-
mation regarding its suitability in wood vinegar produc-
tion (Desvita et al., 2025). In the Sambas area of West 
Kalimantan, this wood is common and often used by 
small furniture businesses, which generates waste such 
as sawdust, boards, and wood pieces. This sawdust waste 
can be used as a raw material for wood vinegar (Desvita 
et al., 2025). However, this type of waste is rarely 
processed effectively. Using lesser-known wood like S. 
griffithii for wood vinegar production can increase the 
value added and reduce reliance on environmentally 
harmful synthetic chemicals.

Previous studies have shown that wood vinegar can 
inhibit the activity of several types of pathogenic fungi 
and wood-destroying insects; however, there are few 
studies examining the effectiveness of wood vinegar, 
particularly against Coptotermes curvignathus termites 
and Schizophyllum commune fungi. Therefore, this study 
investigated the potential of wood vinegar derived from 
S. griffithii wood as a natural preservative for protecting 
wood against attacks by these two destructive organisms.

2. MATERIALS and METHODS

2.1. Materials

S. griffithii wood was obtained from Semparuk 
District, Sambas Regency, C. curvignathus subterranean 
termites from Sungai Ambawang District, and S. 
commune fungus from the Forest Products Chemistry 
Laboratory, Faculty of Forestry, UNTAN. We also used 
potato dextrose agar (PDA; media grade for micro-
biology; Merck, Rahway, NJ, USA), spirits, aqua, 70% 
alcohol, amoxicillin antibiotics, and Whatman paper 
No. 1 (Whatman, Maidstone, UK).

2.2. Wood vinegar production

The sample used in this study was passed through a 
10-mesh screen and retained on a 14-mesh screen. The 

raw material was dried to achieve an air-dried sample 
with water content of 12% to 18% (Standar Nasional 
Indonesia [SNI], 2006). A sawdust sample (1 kg) was 
placed in the reactor sealed, and a thermocouple was 
installed. A series of condensers at different temperatures 
of 300℃, 350℃, and 400℃ was used, with a pyrolysis 
time of 150 minutes. The smoke produced during 
pyrolysis in the reactor was directed to the condenser 
(Desvita et al., 2025). The gas that condensed into the 
wood vinegar was then directed into a wood vinegar 
container (Faisal et al., 2024).

2.3. Testing on subterranean termites 
Coptotermes curvignathus

2.3.1. Termite colony preparation
C. curvignathus termites colony was obtained from 

dead and fallen trees in the Ambawang area, Kubu Raya 
Regency, West Kalimantan (Fig. 1). Parts of the trees 
attacked by termites were cut into several pieces to 
facilitate their transportation to the laboratory for con-
ditioning for approximately three weeks before their use 

Fig. 1. Coptotermes curvignathus subterranean termite 
colony.
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for testing. During conditioning, the humidity in the 
maintenance container was maintained by occasionally 
adding water.

2.3.2. Soaking test paper
The method for soaking the test paper in the con-

centration treatment was modified from Adfa et al. 
(2017). Whatman filter paper was cut to a diameter of 
30 mm (Chieng et al., 2008), assigned a code based on 
the treatment, and weighed to obtain the initial weight 
before the wood vinegar concentration treatment. Five 
concentration levels were tested: 2%, 4%, 6%, 8%, and 
10% (Table 1). The treated test paper served as the food 
source for termites during the test period. The material 
requirements for the concentration treatment were cal-
culated using the following formula (%v/v):

V1 × N1 = V2 × N2 (1)

Where V1 = Volume of wood vinegar required; V2 
= Volume of solution to be produced; N1 = Initial 
concentration of wood vinegar; N2 = Concentration of 
wood of vinegar to be produced.

The concentration treatment, prepared according to 
the composition listed in Table 1, was then applied to 
the filter paper by soaking for 1 hour. Subsequently, the 
filter paper was dried at room temperature for approxi-

mately 24 hours, followed by heating in an oven for 1 
h at 60℃. The sample was weighed to obtain its initial 
weight before feeding to the subterranean termite C. 
curvignathus.

2.3.3. Termite mortality, loss of filter paper 
weight, and feeding rate

Mortality testing was performed using the modified 
cellulose pad method (Addisu et al., 2014). Termite 
testing was conducted using five wood vinegar concen-
trations derived from S. griffithii, applied to Whatman 
filter paper at specified concentrations (Table 1), along 
with one control and four repetitions. Fig. 2 illustrates 
the termite test container used to observe the activity 
and level of consumption by termites. The container was 
specifically designed to maintain environmental condi-
tions suitable for termites, thereby providing accurate 
test results.

The test container was 7 cm high and the diameter 
of the glass base was 5 cm. It was filled with approxi-
mately 15 g of sterilized sand that had been autoclaved 
for 1 h at a temperature of 121℃. The sand was mois-
tened with approximately 4 mL of water. The stages of 
termite testing were as follows: (1) test paper treated 
with a wood vinegar concentration was placed in the 
test glass, (2) subterranean termites were introduced into 
test glass, totaling 33 termites (30 workers and three 
soldiers), and (3) the test glass was placed in a humid 

Table 1. Composition of liquid smoke concentration 
treatment of wood vinegar Santiria griffithii

Concentration 
(%)

Liquid smoke concentration treatment 
requirements

Wood vinegar (mL) Solvent (mL)

2 0.2 9.8

4 0.4 9.6

6 0.6 9.4

8 0.8 9.2

10 1 9 Fig. 2. Termite test scheme.
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container equipped with cotton and water to maintain 
humidity. The experiment was conducted in four repe-
titions over 21 days, with checks every 3 days to collect 
dead termites and prevent fungal growth that could harm 
other living termites, while also controlling the humidity 
conditions of the sand media. The parameters used in 
this study included termite mortality and the weight loss 
of the test paper. Termite mortality and the weight loss 
of the test paper were calculated after the 21-day testing 
period. Mortality was calculated using the following 
formula (Arinana et al., 2024):

Mortality 
(%) =

Total number of dead termites
× 100

Initial total number of termites

(2)

The effectiveness of the wood vinegar concentration 
treatment was assessed based on the observed termite 
mortality and categorized accordingly, as described in 
Table 2.

The weight loss of the test paper was measured after 
21 days of testing to determine the level of C. curvig-
nathus termite consumption. Before weighing, the test 
paper sample was cleaned of the attached dirt from 
termite activity. The samples were then oven-dried at 
60℃ for 1 h, placed in a desiccator for approximately 

15 minutes, and weighed to obtain the oven-dried weight 
of the samples. The percentage of weight loss was cal-
culated using the following formula (Hadi et al., 2018; 
Nkogo et al., 2022; Zalsabila et al., 2024).

Weight 
loss (%) =

Initial weight – Final weight
× 100

Initial weight 

(3)

The weight loss data obtained was compared with the 
classification of the level of resistance to termite attacks, 
as explained by Sornnuwat et al. (1995; Table 3). This 
level of resistance was used to describe the anti-termite 
properties of wood vinegar.

The feeding rate, measured by test paper consump-
tion, allows comparison across tests with varying wood 
vinegar concentrations. Assuming termite mortality 
progresses linearly, Equation (4) was used to calculate 
feeding rates (Chotikhun et al., 2024; Hadi et al., 2014).

Daily feeding rate (mg/termite/day) = 
Weight of test paper consumed (mg) / 
Average number of living termites / 
Number of days in the test period (4)

2.3.4. Testing on the fungus Schizophyllum 
commune

A total of 39 g of PDA was dissolved in 1,000 L of Table 2. Classification of antifeedant activity levels

Mortality (%) Activity level Symbol

M ≥ 95 Very strong A

75 ≤ M < 95 Strong B

60 ≤ M < 75 Fairly strong C

40 ≤ M < 60 Moderate D

25 ≤ M < 40 Slightly weak E

5 ≤ M < 25 Weak F

M < 5 Inactive G

M: mortality.

Table 3. Classification of resistance levels based on 
weight loss

Weight loss (%) Resistance level Symbol

0 Very resistant A

1–3 Resistant B

4–8 Moderately resistant C

9–15 Slightly resistant D

> 16 Not resistant E

Data from Sornnuwat et al. (1995).
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distilled water and homogenized using a magnetic stirrer 
and heating on a hot plate until the PDA solution was 
homogeneous. Subsequently, 0.04 g of the amoxicillin 
antibiotic was added and homogenized, followed by 
sterilization using an autoclave at a temperature of 121℃ 

and a pressure of 1 atm for 15 min. Images of PDA 
media used for fungal testing is shown in Fig. 3.

The propagation of S. commune is based on the 
method of Suresh et al. (2019). S. commune fungus was 
obtained from the Forest Products Chemistry Laboratory 
at the Faculty of Forestry, Untan and propagated using 
fresh PDA medium. S. commune fungus was propogated 
using an ose needle to transfer and place S. commune in 
fresh PDA medium in a sterile Petri dish. After 
inoculation, the plates were incubated at a temperature 
of 22℃–32℃ for 2–7 days. Fig. 4 shows the mycelium 
of fungal isolation after being rejuvenated for research 
purposes.

The fungal activity was tested using a modified 
method (Suresh et al., 2019). Fungal growth media used 
PDA in a petri dish containing wood vinegar concen-
trations of 0.25%, 0.75%, 1.25%, 1.75%, and control 

(Table 4). Material requirements for concentrations were 
calculated using the formula (%, v/v) as referenced in 
Suprianto et al. (2023) and Equation (1). Furthermore, a 
7-day-old S. commune fungal isolate was obtained with 
a diameter of 5 mm using a sterile needle and placed 
in the middle of a petri dish containing PDA media that 
underwent concentration treatment. The Petri dish was 
then sealed, and the edges of the Petri dishes were 
covered with plastic wrap, and stored in an incubation 
room. The fungal growth was observed daily by meas-
uring the diameter of the growth. Observations ceased 
after 7 days or when the fungal growth in the control 
filled the Petri dish. Incubation was carried out at a 

Fig. 3. PDA media for fungal testing. PDA: potato 
dextrose agar.

Fig. 4. Culture of Schizophyllum commune fungus.

Table 4. Composition of wood vinegar Santiria 
griffithii with PDA medium

Concentration (%) Wood vinegar (mL) PDA (mL)

0.25 0.025 9.975

0.75 0.075 9.925

1.25 0.125 9.875

1.75 0.175 9.825

PDA: potato dextrose agar.
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temperature between 22℃ and 32℃ for 2–7 days. All 
testing activities were conducted in a closed room, using 
a laminar airflow device to maintain sterility.

2.3.5. Anti-fungal activity
Data used to determine anti-fungal activity (AFA) 

values were obtained by measuring the growth of fungi 
mycelium on the seventh day after inoculation or the 
last day of testing. Measurements are made using digital 
calipers. Two perpendicular lines are drawn at the bottom 
of the Petri dish to calculate the average size of fungal 
growth, which was then determined using formula 5. 
Fig. 5 illustrates the method used for measuring fungal 
growth. This process involves periodically measuring the 
growth of mycelium colonies in both the vertical and 
horizontal sections to evaluate the rate of fungal growth. 
The average growth of fungi is calculated using the 
following formula.

P =
d1 + d2

2 (5)

P = average fungal growth, d1 = vertical growth, d2 
= horizontal growth.

The calculation of the AFA value references the 
measurement method (Gothandapani et al., 2015). The 
AFA data used the average diameter from the last day 
of observation. The AFA formula is as follows.

AFA (%) =
(A – B) – (C – B)

× 100
A – B (6)

AFA = antifungal activity (%); A = control mycelial 
growth (mm); B = initial mycelial size at incubation 
(mm); C = mycelial growth in treatment media (mm).

After calculating the AFA value, we assessed the 
effect of wood vinegar S. griffithii wood concentration 
treatment on the growth of S. commune fungus. This 
was then compared with the antifungal activity classifi-
cation data (Table 5).

2.4. Data analysis

The experimental design for wood vinegar testing of 
S. griffithii wood against subterranean termites, C. 
curvignathus, and S. commune fungi utilized factorial 
experiment in a completely randomized design. The first 
factor was wood vinegar pyrolysis temperature, and the 
second factor was wood vinegar concentration (2%, 4%, 
6%, 8%, and 10%) for anti-termite effects, whereas for 
AFA, the concentrations used were 0.25%, 0.75%, 
1.25%, and 1.75%), with four replicates. Data on the 

Fig. 5. Fungal growth measurement pattern.

Table 5. Classification of antifungal activity

No Antifungal activity (%) Activity level

1 AFA > 75 Very strong

2 50 < AFA ≤ 75 Strong

3 25 < AFA ≤ 50 Moderate

4 0 < AFA ≤ 25 Weak

5 0 Inactive

AFA: antifungal activity.
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inhibition of anti-termite and AFA were analyzed using 
analysis of variance. When significant differences among 
treatments were detected, Duncan’s multiple range test 
(DMRT) was applied at a 5% significance level. Data 
analysis was performed using SAS version 9.13 (SAS 
Institute, Cary, NC, USA).

Linear regression analysis was employed to evaluate 
the effect of wood vinegar concentration on termite 
mortality and filter paper weight loss, while correlation 
analysis was applied to examine the relationship between 
wood vinegar concentration and both response variables. 
The simple regression model is expressed as Y = a + 
bx, where Y represents the dependent variables (termite 
mortality and filter paper weight loss), a denotes the 
constant, b is the regression coefficient, and x represents 
the independent variable (wood vinegar concentration).

3. RESULTS and DISCUSSION

3.1. Termite mortality, loss of filter paper 
weight, and feeding rate

In this study, we demonstrated that higher pyrolysis 
temperatures and concentrations of S. griffithii wood 
vinegar increased termite mortality. In untreated samples, 
termite mortality was low, at 14.40 ± 2.62%. Termite 
mortality rate with wood vinegar increased significantly. 
Pyrolysis temperatures of 300℃ and 350°℃ and wood 
vinegar concentrations of 8% and 10% resulted in 100% 
termite mortality. This indicates that higher concentra-
tions of wood vinegar are highly toxic to termites. 
Interestingly, wood vinegar prepared at a pyrolysis 
temperature of 400℃ was even more effective, causing 
100% termite mortality at a concentration of just 6%. 
This suggests that wood vinegar becomes more toxic to 
termites when produced at higher temperatures, even in 
smaller amounts (Table 6).

The increase in termite mortality, along with the rise 
in concentration and pyrolysis temperature, indicates that 

S. griffithii wood vinegar contains effective toxic com-
pounds, including acid derivatives, phenols, carbonyl 
derivatives, and other volatile compounds identified by 
gas chromatography–mass spectrometry (GC-MS) and 
are suspected to have toxic properties against termites 
(Desvita et al., 2025). These findings are in line with 
those of Zhang et al. (2020), who reported that phenolic 
compounds are active substances with antimicrobial and 
insecticidal effects. The mechanism by which phenolic 
compounds function as insecticides involves entering the 
insect's body through the respiratory system, weakening 
the nervous system and damaging the respiratory system 
(Adfa et al., 2020). Consequently, this incapacitates the 
insects’ ability to breathe, ultimately leading to their 
death.

The results of the termite mortality tests indicated 
that 8% and 10% wood vinegar effectively killed termites 
at all temperatures (300℃, 350℃, and 400℃), achieving 
100% mortality. Oramahi et al. (2023) demonstrated a 
similar findings, where wood vinegar from other biomass 
sources, such as medang wood (Cinnamomum sp.) resul-
ted in high termite mortality at the same concentration 
(8%). Notably, 100% mortality was recorded in wood 
vinegar at pyrolysis temperatures of 370℃, 400℃, and 
430℃. Increasing the concentration of wood vinegar 
significantly enhanced termite mortality, particularly at 
a pyrolysis temperature of 400℃, where phenolic 
compounds, acid derivatives, and carbonyl derivatives 
appeared to work together synergistically to create toxic 
effects. Our findings are in line with those of Xin et al. 
(2021), who reported that phenolic compounds in wood 
vinegar possess poisonous properties, positioning them 
as potentially environmentally friendly insecticides.

Overall, increasing the concentration of wood vinegar 
at all pyrolysis temperatures led a significant increase in 
termite mortality and a reduction in weight loss in the 
test paper caused by the termite damage. Concentrations 
of 6%, 8%, and 10% yielded complete mortality (Fig. 6). 
At higher concentrations, particularly at pyrolysis tem-
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peratures of 400℃, the weight loss of the test paper 
dropped sharply to 13.65 ± 1.78, which is considered 
less resistant (symbol D). Therefore, wood vinegar con-
centration was directly correlated with reduced paper 
weight loss. At a concentration of 10%, weight loss of 
paper at both 350℃ and 400℃ was approximately 13% 
(Fig. 7). A study by Suprianto et al. (2023) demonstrated 
that the application of durian wood vinegar (Durio sp.) 
at 450℃ with a 6% concentration resulted in 100% mor-
tality of C. curvignathus. Oramahi et al. (2014) reported 
that the higher the concentration of wood vinegar from 
Vitex pubescens, the greater the mortality of C. curvig-

nathus termites and the less the weight loss of filter 
paper. Fig. 8 illustrates the conditions of the test paper 
after exposure to C. curvignathus subterranean termites.

The reduction in the weight of the test paper is attri-
buted to the capacity of the wood vinegar to safeguard 
the test paper against termite attacks. Compounds found 
in wood vinegar, such as phenol, acid, and carbonyl, act 
as inhibitors of cellulose-digesting enzymes in termites 
(Nurhaida et al., 2025).

This study demonstrates that wood vinegar derived 
from S. griffithii effectively protects test paper from 
termite damage, with lower concentrations offering 

Table 6. The weight loss of filter paper and mortality of Coptotermes curvignathus termites against wood 
vinegar Santiria griffithii

Treatment

Mortality (%) Paper weight loss (%) Feeding rate 
(mg/individual/d)Pyrolysis temperature

(℃) Concentration (%)

Control 0  14.40 ± 2.62a 55.64 ± 4.64a 0.056 ± 0.0054

300

2.0  48.49 ± 5.54b 54.52 ± 3.82a 0.056 ± 0.0045

4.0  55.31 ± 6.25c 43.09 ± 10.76b 0.044 ± 0.0112

6.0  78.79 ± 2.47e 25.63 ± 6.78cd 0.026 ± 0.0083

8.0 100 ± 0f 20.39 ± 3.94cde 0.025 ± 0.0037

10.0 100 ± 0f 15.41 ± 3.10cde 0.016 ± 0.0033

350

2.0   70.56 ± 5.18cd 42.95 ± 11.35b 0.044 ± 0.0114

4.0  64.40 ± 6.71d 26.83 ± 7.83c 0.027 ± 0.0081

6.0  79.55 ± 5.17e 22.95 ± 5.25cde 0.023 ± 0.0059

8.0 100 ± 0f 22.25 ± 7.29cde 0.022 ± 0.0078

10.0 100 ± 0f 13.02 ± 3.22e 0.013 ± 0.0032

400

2.0  65.91 ± 3.81e 37.20 ± 13.81b 0.043 ± 0.0092

4.0  80.31 ± 5.80e 24.87 ± 5.87cd 0.025 ± 0.0052

6.0 100 ± 0f 20.39 ± 3.64cde 0.021 ± 0.0049

8.0 100 ± 0f 17.52 ± 3.70cde 0.018 ± 0.0041

10.0 100 ± 0f 13.65 ± 1.78e 0.014 ± 0.0018

Values are presented as mean ± SD.
a–f Different letters indicate significant differences between treatments according to statistical analysis.
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maximum protection (Fig. 8). These findings align with 
those of Varma et al. (2018), who indicated that increa-
sing the pyrolysis temperature produced volatile com-
pounds that were more effective in diminishing enzy-
matic activity in termites, thus mitigating damage to the 

targeted material. The relationship between the mortality 
of C. curvignathus termites and the weight loss of test 
paper treated with S. griffithii wood vinegar demonstra-
ted an inverse correlation; specifically, as the concen-
tration and pyrolysis temperature increased, the weight 

Fig. 6. Simple regression and correlation between the concentration of wood vinegar Santiria griffithii (%) and 
mortality of Coptotermes curvignathus at pyrolysis temperatures of 300℃, 350℃, and 400℃.

Fig. 7. Simple regression and correlation between the concentration of wood vinegar Santiria griffithii (%) and 
the weight loss of filter paper at pyrolysis temperatures of 300℃, 350℃, and 400℃.
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loss of the test paper decreased. The findings are 
supported by the chemical composition of wood vinegar 
generated at three distinct pyrolysis temperatures (300℃, 
350℃, and 400℃). Results of GC-MS analysis indicated 
that phenolic and carbonyl compounds considerably 
affected the insecticidal efficacy (Desvita et al., 2025).

The termite feeding rate was also analyzed using the 
total weight of the filter paper consumed per total num-
ber of termite individuals per day, assuming an equal 
rate of consumption. The results indicated a decrease in 
the feeding rate of filter paper consumption by termites 
(Table 6). Differences in pyrolysis temperature and the 
concentration of wood vinegar administered affected the 
termites’ feeding rate. These findings are consistent with 
those reported by Arinana et al. (2012) and Hadi et al. 
(2021) who demonstrated that raw material influences 
termite feeding rate. This is due to variations in the 
chemical components of the raw material. Protozoa 
found in the termite digestive systems can survive in the 
presence of cellulose (Kanai et al., 1982). However, the 
presence of other components such as acids and phenols 
in wood vinegar can reduce the feeding rate of termites 
because these components cause termite mortality. This 
aligns with studies showing that termite mortality reduces 
the feeding rate of C. curvignathus Holmgren termites 
(Chotikhun et al., 2024). Additionally, the feeding rate 
was influenced by the termite species. Coptotermes 
formosanus and Reticulitermes speratus termites con-

sumed the sapwood of Pinus densiflora at rates of 
0.0961 and 0.0737 mg per termite per day, respectively 
(Yoshimura et al., 2003). For C. formosanus, feeding 
activity increased as mortality decreased at the same 
concentration (Yoshimura et al., 2003).

Phenolic compounds and their derivatives 2-methyl-
phenol and 3-methylphenol were consistently found in 
high concentrations across all pyrolysis temperatures 
(Desvita et al., 2025). According to Ouattara et al. 
(2023), compounds possess toxic properties for insects, 
leading to increased termite mortality and more effective 
protection of organic materials. Phenol in wood vinegar 
pyrolysed at 400℃ exhibited a more significant syner-
gistic effect with carbonyl compounds, thereby hastening 
termite death and reducing the weight loss of the test 
paper. At 350℃ and 400℃, carbonyl compounds such 
as 2-pentanone and 4-hydroxy-4-methyl- were predomi-
nant. Adfa et al. (2017) indicated that primary com-
pounds in wood vinegar, including phenol, acids, and 
carbonyl compounds, function as anti-termite agents. The 
presence of larger carbonyl compounds in this investiga-
tion was directly correlated to the reduction in paper 
damage, as these compounds disrupted Enzymatic acti-
vity of termites. Varma et al. (2018) demonstrated that 
pyrolysis at elevated temperatures yields more stable 
and effective chemical compounds than insecticides, as 
evidenced by decreased termite mortality and enhanced 
protection against organic matter. The application of 

(a) (b) (c)

Fig. 8. Condition of test paper after testing on subterranean termites treated with wood vinegar Santiria griffithii 
at pyrolysis temperatures of 300℃ (a), 350℃ (b), 400℃ (c).
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wood vinegar to filter paper effectively resulting in 
termite mortality demonstrates its potential as a wood 
preservative when applied to the surface of wood 
materials. This finding also suggests that wood vinegar 
could be utilized as a soil treatment to mitigate termite 
infestations.

The influence of wood vinegar on the mortality of C. 
curvignathus termites across different pyrolysis tempera-
tures and concentrations is presented in Fig. 6. The 
correlation coefficients between S. griffithii vinegar con-
centration and termite mortality at 300℃, 350℃, and 
400℃ are 0.966, 0.957, and 0.872, respectively, indica-
ting a strong and positive relationship (p < 0.05). Similar 
findings have been reported by Oramahi et al. (2023).

The simple regression equations and coefficients of 
determination for the effect of wood vinegar concentra-
tion on termite mortality at pyrolysis temperatures of 
300℃, 350℃, and 400℃ are Y = 5.555 x + 17.316 and 
0.933, Y = 9.091 x + 16.883 and 0.916, and Y = 21.769 
x + 15.714 and 0.760, respectively. These models 
demonstrate that increasing wood vinegar concentration 
consistently enhances C. curvignathus mortality. The 
results aligned with those of Oramahi et al. (2023), who 
observed higher concentrations of wood vinegar derived 
from medang wood (Cinnamomum sp.) significantly 
elevated termite mortality.

The impact of wood vinegar on the weight loss of 
filter paper caused by C. curvignathus termites at various 
pyrolysis temperatures and concentrations are illustrated 
in Fig. 7. The correlation analysis revealed coefficients 
of 0.919, 0.870, and 0.860 between S. griffithii vinegar 
concentration and filter paper weight loss at 300℃, 
350℃, and 400℃, respectively, signifying a robust posi-
tive correlation (p < 0.05). These findings are consistent 
with those of Oramahi et al. (2023). Regression equa-
tions, and coefficients of determination describing the 
relationship between wood vinegar concentration and 
filter paper weight loss at 300℃, 350℃, and 400℃ were 
Y = 67.272 x – 8.780 (R² = 0.844), Y = 58.459 x – 

7.999 (R² = 0.759), and Y = 55.564 x – 7.815 (R² = 
0.740), respectively. These equations indicate that higher 
concentrations of S. griffithii vinegar correspond to 
reduced filter paper weight loss, reflecting diminished 
feeding activity of C. curvignathus.

The correlation between vinegar pyrolysis tempera-
ture and weight loss reduction was influenced by termite 
mortality, as surviving individuals continued to consume 
filter paper, thereby contributing to substantial weight 
decreases. As shown in Fig. 7, treatment with vinegar 
concentrations ranging from 2.0% to 10.0% resulted in 
reductions of 13.02%–55.64% in filter paper weight. 
These findings are consistent with those of Oramahi et 
al. (2023), who reported that wood vinegar derived from 
medang wood (Cinnamomum sp.) at concentrations of 
2.0% to 8.0% decreased filter paper weight loss by 
11.99%–64.73% when tested against C. formosanus.

3.2. Antifungal activity

Both higher pyrolysis temperatures and increased 
wood vinegar concentrations greatly improved the ability 
to stop the growth of S. commune fungus. When wood 
vinegar was produced at a high temperature (400℃), it 
completely prevented fungal growth, even at a low 
concentration of 1.75%. At lower temperatures (300℃ 

and 350℃), the same concentration only inhibited fungal 
growth by 76.78% and 83.50%, respectively. In sum-
mary, using wood vinegar made at 400℃ and a concen-
tration of 1.75% is highly effective at stopping S. 
commune fungus from growing, according to the statis-
tical analysis (Table 7). This implies that an increase in 
pyrolysis temperature increases the active ingredients in 
wood vinegar, making it more effective against fungal 
growth (Fig. 9).

Previous investigations have proposed that phenolic 
compounds derived from lignocellulosic biomass are 
likely the main contributors to the antifungal efficacy of 
wood vinegars (Oramahi et al., 2010; Suprianto et al., 
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2023). The results of this study are consistent with pre-
vious research demonstrating that increasing the concen-

tration of wood vinegar significantly inhibits the growth 
of S. commune fungi. This can be attributed to the 
bioactive compounds in wood vinegar, such as phenols, 
organic acids, and carbonyl compounds with potent 
antimicrobial properties (Permana et al., 2021). A tem-
perature of 370℃ at a concentration of 10% inhibited 
100% of the growth of S. commune fungi. The mecha-
nism of action of these compounds in inhibiting fungal 
growth is complex. Several recent studies have shown 
that phenolic compounds can damage the integrity of 
fungal cell membranes, causing cytoplasmic leakage and 
disruption of cellular metabolic processes (Lee et al., 
2019).

The increased efficacy of fungal growth inhibition 
observed at elevated pyrolysis temperatures can be 
ascribed to the formation of more complex and stable 
aromatic compounds under such conditions. These com-
pounds typically demonstrate enhanced antimicrobial ac-
tivity compared to those generated at lower temperatures 
(Guimarães et al., 2014).

The results of the GC-MS analysis indicated that S. 
griffithii wood vinegar contains complex chemical com-
ponents, with phenol being the predominant component 
at various pyrolysis temperatures (Desvita et al., 2025). 
Consistent presence of phenol and its derivatives (such 
as 2-methylphenol, 3-methylphenol, and 2-methylphenol) 
suggests that lignin, the primary component of wood, is 

Table 7. Inhibitory power of wood vinegar Santiria 
griffithii against the growth of Schizophyllum 
commune fungus

Treatment

Pyrolysis 
temperature 

Wood vinegar 
concentration (%)

Growth inhibition 
(%) ± SD

Control 0.00 0.00 + 0.00a

300

0.25 43.49 + 0.24b

0.75 61.58 + 0.28e

1.25 72.00 + 0.10g

1.75 76.78 + 0.42i

350

0.25 46.49 + 0.47c

0.75 62.48 + 0.24f

1.25 75.39 + 0.23h

1.75 83.50 + 0.24k

400

0.25 50.38 + 0.57d

0.75 79.78 + 0.18j

1.25 90.46 + 0.081

1.75 100 + 0.00m

Values are presented as mean ± SD.
a–m Different letters indicate significant differences between 
treatments according to statistical analysis.

(a) (b) (c)

Fig. 9. The inhibitory power of wood vinegar Santiria griffithii against the growth of Schizophyllum commune 
at pyrolysis temperatures of 300℃ (a), 350℃ (b), and 400℃ (c).
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effectively degraded during the pyrolysis process. Fur-
thermore, the detection of compounds such as 2-penta-
none, 4-hydroxy-4-methylcyclopentenone, and other de-
rivatives suggests the decomposition of cellulose and 
hemicellulose (Desvita et al., 2025). These compounds 
inhibit the growth of S. commune fungi.

Phenolic compounds and their derivatives exhibit pro-
nounced antifungal activity. Their mechanism of action 
involves the degradation of the fungal cell membrane, 
inhibition of critical enzymes and disruption of cellular 
metabolism (Guimarães et al., 2014). Moreover, carbonyl 
compounds can interact with proteins and nucleic acids 
in fungal cells, thus interfering with cellular function and 
hindering their growth (Mansur et al., 2023). Numerous 
studies have demonstrated that certain carbonyl com-
pounds exhibit significant antifungal activity, particularly 
when combined with phenolic compounds (Mansur et 
al., 2023). In addition, owing to their reactive chemical 
structures, cyclopentenone derivative compounds show 
promise as antimicrobial agents (Gama et al., 2024). 
They can interact with proteins and lipids in fungal 
cells, leading to cell damage and cell death (Lee et al., 
2019).

Besides phenol, carbonyl, and cyclopentenone deriva-
tive compounds, acid compounds inhibits the growth of 
S. commune fungi (Adfa et al., 2020). Acetic acid has 
the capacity to decrease the pH level within the envi-
ronment, which is conducive to fungal growth, thereby 
establishing conditions detrimental to optimal fungal 
development (Mansur et al., 2023). These acidic condi-
tions may have inhibited the activity of crucial enzymes 
within fungal cells and disrupt standard metabolic pro-
cesses (Turecka et al., 2018). Therefore, it was essential 
to determine the antifungal activity of S. griffithii wood 
vinegar is influenced not only by the presence of indi-
vidual compounds but also by the synergistic interac-
tions among various constituents. The amalgamation of 
phenol, acids, carbonyl compounds, and cyclopentenone 
derivatives in S. griffithii wood vinegar possesses the 

potential to augment the efficacy of inhibiting the 
growth of S. commune fungi (Desvita et al., 2025).

Overall, the wood vinegar prepared from S. griffithii 
was found to be a strong antifungal agent in laboratory 
tests. When produced at a pyrolysis temperature of 400℃ 

and used at a concentration of 1.75% completely inhi-
bited the growth of S. commune fungus. At a lower 
pyrolysis temperature of 350℃, a concentration of 
1.25% inhibited fungal growth by 75.39%. Thus, using 
wood vinegar at a 1.25% concentration and 350℃ is 
optimal for reducing S. commune fungus growth in lab 
settings.

4. CONCLUSIONS

Wood vinegar produced from the lesser-known wood 
S. griffithii is highly effective at controlling both the 
termite C. curvignathus and the fungus S. commune. We 
demonstarted that increasing the pyrolysis temperature 
and the concentration of wood vinegar leads to higher 
termite death rates. When vinegar was produced at 400℃ 

and used at a concentration of 6% or higher, it resulted 
in 100% termite mortality. Similarly, higher pyrolysis 
temperatures improved the vinegar’s ability to inhibit 
the growth of S. commune with complete inhibition 
(100%) achieved at 400℃ and a concentration of 1.75%. 
Overall, S. griffithii wood vinegar shows strong promise 
as a eco-friendly wood preservative, with a temperature 
of 400℃ being the most effective for controlling both C. 
curvignathus termites and S. commune fungi.
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