Table 2.
Architecture of LeNet3 and NIRNet models
Layer set | Layer | LeNet3 | NIRNet |
Layer set 1 | Convolution 2D | 20, 5 × 5, same, input | 32, 3 × 1, input |
Activation | ReLU | LeakyReLU |
Max pooling | 2 × 2, stride = 2 × 2 | None |
Layer set 2 | Convolution 2D | 50, 5 × 5, same | 16, 9 × 1 |
Activation | ReLU | LeakyReLU |
Max pooling | 2 × 2, stride = 2 × 2 | None |
Layer set 3 | Convolution 2D | 50, 5 × 5, same | 8, 27 × 1 |
Activation | ReLU | LeakyReLU |
Max pooling | 2 × 2, stride = 2 × 2 | None |
Layer set 4 | Convolution 2D | 50, 5 × 5, same | 1, 1 × 1 |
Activation | ReLU | LeakyReLU |
Max pooling | 2 × 2, stride = 2 × 2 | None |
Fully connected layer | Dense | 500 | None |
Activation | ReLU |
Output layer | Dense | 5 | 5 |
Activation | Softmax | Softmax |