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ABSTRACT

Automatic wood species identification systems have enabled fast and accurate identification of wood species

outside of specialized laboratories with well-trained experts on wood species identification. Conventional auto-

matic wood species identification systems consist of two major parts: a feature extractor and a classifier. Feature

extractors require hand-engineering to obtain optimal features to quantify the content of an image. A 

Convolutional Neural Network (CNN), which is one of the Deep Learning methods, trained for wood species

can extract intrinsic feature representations and classify them correctly. It usually outperforms classifiers built on

top of extracted features with a hand-tuning process.

We developed an automatic wood species identification system utilizing CNN models such as LeNet, 

MiniVGGNet, and their variants. A smartphone camera was used for obtaining macroscopic images of rough 

sawn surfaces from cross sections of woods. Five Korean softwood species (cedar, cypress, Korean pine, Korean 

red pine, and larch) were under classification by the CNN models. The highest and most stable CNN model was

LeNet3 that is two additional layers added to the original LeNet architecture. The accuracy of species identi-

fication by LeNet3 architecture for the five Korean softwood species was 99.3%. The result showed the auto-

matic wood species identification system is sufficiently fast and accurate as well as small to be deployed to a

mobile device such as a smartphone.
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1. INTRODUCTION

Automatic wood species identification sys-

tems have enabled fast and accurate identi-

fication of wood species outside of specialized 

laboratories with well-trained experts on wood 

species identification. Previously most of the 

automated wood species identification systems 

have used pipelines relying on hand-tuning seg-

mentation, feature extraction and classification 

steps for each macroscopic images of the wood 

surface. 

Feature extractors or image descriptors re-

quire hand-engineering to obtain optimal fea-

tures to quantify the content of an image. In 

general, image content quantification algorithms 

can be classified into several categories such as 

encoding color (color moments, color histo-

grams, color correlograms), encoding shape (Hu 

moments and Zernike moments), encoding 

texture (Local Binary Pattern and Haralick 

texture), key point detectors (FAST, Harris, 

DoG, and so on), local invariant descriptors 

(SIFT, SURF, BRIEF, ORB, and so on), and 

Histogram of Oriented Gradients (HOG). 

For the past years, many researchers have ex-

plored various types of feature extractors for 

wood identification: hue, saturation, value, con-

trast, angular second moment, sum of variances, 

long run emphasis, fractal dimension, and wave-

let horizontal energy proportion (Yu et al., 

2009), color-based features (Peng, 2013), tex-

ture-based features such as Gabor filters, Gray 

Level Co-occurrence Matrices (GLCM), Local 

Binary Patterns (LBP), Completed Local Binary 

Pattern (CLBP), Local Phase Quantization 

(LPQ), Basic Grey Level Aura Matrix 

(BGLAM), Improved Basic Grey Level Aura 

Matrix (I-BGLAM), Statistical Properties of 

Pores Distribution (SPPD), Mask Matching 

Image (MMI), Coiflet Discrete Wavelet 

Transform (DWT), the Markovian, spectral, and 

illumination invariant textural features, aniso-

tropic diffusion and Local Directional Binary 

Patterns (LDBP) (Tou et al., 2009a; Tou et al., 

2009b; Nasirzadeh et al., 2010; Yusof et al., 

2010; Yusof and Rosli, 2013; Kobayashi et al., 

2015; Kobayashi et al., 2017; Khalid et al., 

2011; Khairuddin et al., 2011, Wang et al., 

2013a; Wang et al., 2013b; Yadav et al., 2013; 

Mohan et al., 2014; Yadav et al., 2014; Martins 

et al., 2015; Haindl and Vácha, 2015; Zamri et 

al., 2016; Hiremath and Bhusnurmath, 2017), 

key point detectors, and local invariant de-

scriptors such as Speeded Up Robust Features 

(SURF) (Huang et al., 2009) and Scale-Invariant 

Feature Transform (SIFT) (Hu et al., 2015; 

Martins et al., 2015). A Kernel-Genetic 

Algorithm (K-GA) technique was also used for 

feature selection (Yusof et al., 2013a). 

From the extracted feature vectors, re-

searchers used different types of classifiers such 

as k Nearest-Neighbor (kNN) classifier (Khalid 

et al., 2011; Khairuddin et al., 2011; Kobayashi 

et al., 2015; Hu et al., 2015; Hiremath and 

Bhusnurmath, 2017), Support Vector Machine 

(SVM) (Martins et al., 2013; Paula Filho et al., 

2014; Hu et al., 2015; Zamri et al., 2016), 

Linear Discriminant Analysis (LDA) classifier 

(Khalid et al., 2011), a multi-layer neural net-
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work based on the popular back propagation 

(MLBP) algorithm (Yusof et al., 2010; Yusof 

and Rosli, 2013), Artificial Neural Networks 

(ANN) (Hu et al., 2015), Multilayer Perceptron 

Backpropagation Artificial Neural Network 

(MPB ANN) (Yadav et al., 2013), several 

WEKA classification algorithms (Yadav et al., 

2014), and correlation (Mohan et al., 2014). 

Sometimes, a pre-classifier such as Fuzzy log-

ic-based pre-classifier (Yusof et al., 2013b) was 

used to increase classification accuracy. For the 

same purpose, several studies adapted combina-

tory strategies such as image segmentation and 

multiple feature sets (Cavalin et al., 2013; 

Kapp et al., 2014), a two-level divide-and-con-

quer classification strategy (Paula Filho et al., 

2014), the combination of all classifiers, and 

different dynamic selection of classifiers (DSC) 

methods (Martins et al., 2015). Also, an adap-

tive multi-level approach for combining multi-

ple classifications was applied to forest species 

recognition (Cavalin et al., 2016). 

In these days, the hand-engineering process in 

the conventional automatic image recognition 

has been replaced by utilizing Convolutional 

Neural Networks (CNNs) such as LeNet (Lecun 

et al., 1998), AlexNet (Krizhevsky et al., 

2012), GoogLeNet (Szegedy et al., 2014), 

VGGNet (Simonyan and Zisserman, 2014), 

ResNet (He et al., 2016), and so on. The CNNs 

trained for wood species can extract intrinsic 

feature representations and classify them 

correctly. It usually outperforms classifiers built 

on top of extracted features with a hand-tuning 

process. A CNN model was developed to rec-

ognize Brazilian forest species (macroscopic im-

ages for 41 species and microscopic images for 

112 species), and resulting accuracy was better 

than 97% for both datasets (Hafemann et al., 

2014). 

Utilization of a mobile device like a smart-

phone is essential to speed up the wood identi-

fication process on sites. A smartphone equips 

with a decent camera can be used as a camera 

for automatic wood species identification from 

macroscopic pictures of wood although it is not 

the best choice for the conventional process of 

feature extraction tasks. Also, illumination con-

dition is often not appropriate for most of the 

traditional image recognition tasks. However, 

deep neural network techniques give a chance to 

overcome the limitations posed by the conven-

tional feature extraction methods requiring 

high-quality images under controlled illumination.

In this study, we developed an automatic 

wood species identification system utilizing 

CNN models and macroscopic images that were 

obtained by a smartphone camera. Regarding 

the accuracy of the automatic wood species 

identification system, several pipelines based on 

different CNN models were evaluated for five 

Korean wood species (cedar, cypress, Korean 

pine, Korean red pine, and larch).

2. MATERIALS and METHODS

2.1. Sample Preparation

Five Korean softwood species [cedar 

(Cryptomeria japonica), cypress (Chamaecyparis 
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obtusa), Korean pine (Pinus koraiensis), Korean 

red pine (Pinus densiflora), and larch (Larix 

kaempferi)] were under investigation by an auto-

matic wood species identification utilizing CNN 

techniques. We purchased fifty lumbers of each 

species of 50 × 100 × 1200 mm3 (thickness × 

with × length) from several mills participating 

the National Forestry Cooperative Federation in 

Korea. The lumbers in each species were from 

different regions of Korea. 10 ∼ 20 specimens 

of 40 × 50 × 100 mm3 (R × T × L) were cut 

from each lumber (50 wood samples per spe-

cies). 

2.2. Image Acquisition and Dataset 

Preparation

We used a smartphone (iPhone 7) to obtain 

macroscopic pictures of the sawn surfaces of 

cross sections of the specimen. During image 

acquisition process, the smartphones placed on 

a simple frame as a stable support. The camera 

in an iPhone 7 model has f/1.8 lens and phase 

detection autofocus function and produces an 

image of 12 Megapixels. The camera produces 

a color picture of 3024 × 4032 pixels. The pix-

el size of the image was 41.7 µm. Only center 

part of the picture contains an image of wood. 

The images were vertical shape, and thus only 

a part of the wood image (1200 × 2400 pixels 

around the center) was cropped. The total num-

ber of the cropped images were 187.

We prepared 16865 images of 512 × 512 

pixels by utilizing a sliding window method; 

12649 images of all (75%) were used for train-

ing and the other 4216 images (25%) for 

validation. Table 1 listed the number of images 

for each species. Also, we separately prepared 

an “External Validation Set (EVS)” for determi-

nation of the accuracy of the automated wood 

species identification. The images in the EVS 

were not overlapped those in the training and 

testing sets. The EVS included total 50 images 

(10 images from each species) of 1200 × 2400 

pixels.

Species Train Test Total

cedar 2321 774 3095

cypress 2565 855 3420

Korean pine 2970 990 3960

Korean red pine 2295 765 3060

Larch 2498 832 3330

Total 12649 4216 16865

Table 1. A number of images (512 × 512 pixels) for

training and testing purpose for each species

Fig. 1. Dataset preparation from five Korean soft-

wood species. (A) Cropped image from an original 

image from a smartphone camera, (B) cropped im-

ages prepared from (A) by a sliding window meth-

od, and (C) resized images from (B). Images of (C) 

step were input images for the CNN models used in 

this study.
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2.3. Model Architecture

The CNNs are the types of algorithms that 

can learn appropriate parameters of various im-

age processing operations such as smoothing, 

sharpening, and edge detection for an input 

image. The CNNs also have capabilities to au-

tomatically learn discriminating filters for de-

tection of low-level structures such as edges 

and blob-like structures as well as of high-level 

objection such as faces, cats, dogs, cups, etc. 

This utilization of the lower-level layers or 

features to learn high-level features is called 

the compositionality of CNNs, which is ach-

ieved by stacking a specific set of layers 

purposefully. Building blocks of CNNs are con-

volution (CONV) layer, activation (ACT) layer, 

pooling (POOL) layer, fully-connected (FC) 

layer, batch normalization (BN), and dropout 

(DROPOUT). Combinations of these building 

blocks become a CNN architecture for a given 

task (Table 2 and 3). 

LeNet and VGGNet were the base of the 

models investigated in this study. LeNet archi-

tecture is simple with only two convolution lay-

ers (Fig. 2 and Table 2). VGGNet is a deep 

CNN (16 or 19 layers), but we stripped 

VGGNet down to only with two layers of two 

convolutional layers to build MiniVGGNet (Fig. 

2 and Table 3). We added third and fourth ex-

Layer Type Output Size
Filter Size

/Stride

INPUT IMAGE 32 × 32 × 3

CONV 32 × 32 × 20 5 × 5 × 20

ACT 32 × 32 × 20

POOL 16 × 16 × 20 2 × 2

CONV 16 × 16 × 50 5 × 5 × 50

ACT 16 × 16 × 50

POOL 8 × 8 × 50 2 × 2

FC 500

ACT 500

FC 5

SOFTMAX 5

Table 2. A table summary of the LeNet architecture 

for 32 × 32 × 3 input image. To build LeNet2 and 

LeNet3, one layer or two layers were added to the 

LeNet architecture, respectively

Layer Type Output Size
Filter Size

/Stride

INPUT IMAGE 32 × 32 × 3

CONV 32 × 32 × 32 3 × 3 × 32

ACT 32 × 32 × 32

BN 32 × 32 × 32

CONV 32 × 32 × 32 3 × 3 × 32

ACT 32 × 32 × 32

BN 32 × 32 × 32

POOL 16 × 16 × 32 2 × 2

DROPOUT 16 × 16 × 32

CONV 16 × 16 × 64 3 × 3 × 64

ACT 16 × 16 × 64

BN 16 × 16 × 64

CONV 16 × 16 × 64 3 × 3 × 64

ACT 16 × 16 × 64

BN 16 × 16 × 64

POOL 8 × 8 × 64 2 × 2

DROPOUT 8 × 8 × 64

FC 512

ACT 512

BN 512

DROPOUT 512

FC 5

SOFTMAX 5

Table 3. A table summary of MiniVGGNet archi-

tectures for 32 × 32 × 3 input image. To build 

MiniVGGNet2 and MiniVGGNet3, one layer or two 

layers were added to the MiniVGGNet architecture, 

respectively 
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tensive layers into the base models to build 

LeNet2, LeNet3, MiniVGGNet2, and 

MiniVGGNet3. For the LeNet-based model, 

(CONV ⟹ ACT ⟹ POOL) was the extensive 

layer unit, but for the MiniVGGNet model, 

(CONV ⟹ ACT ⟹ BN ⟹ CONV ⟹ ACT ⟹ 

BN ⟹ POOL ⟹ DROPOUT) was the one.

2.4. Model training and determination of 

accuracy 

The Stochastic Gradient Descent (SGD) algo-

rithm optimized the model parameters with the 

learning rate = 0.01. The loss function was bi-

nary cross entropy. A number of epochs were 

50 with a batch size of 64. Training process 

used three levels (32, 64, and 128 pixels) of in-

put images. Pixel values of the input images 

were normalized by 255. A workstation with 

XEON CPU (28 threads) with 64 GB of mem-

ory as well as GPU with 24 GB (NVIDIA 

Quadro M6000). The operating system was 

Ubuntu 16.04 LTS with CUDA 8.0, Python 2.7, 

Tensorflow 1.2 and Keras 2.0.

We evaluate identification performance of the 

CNNs by utilizing the following equation.

Accuracy (%) = 

Number of correctly 

identified patches
× 100

Total number of patches 

used for identification

Fig. 2. The LeNet and MiniVGGNet architectures. The layers between brackets are the extensive unit layer for 

each architecture during extension of the model. 
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From the EVS (images of 1200 × 2400 pix-

els), we randomly cropped 100 patches with 

512 × 512 pixels. We chose the size of the 

patch to include wood anatomical features such 

as growth rings. Each patch was fed into the 

model generated by utilizing the model archi-

tecture described in section 2.3. For each pre-

diction, we examined the classification result 

whether it is true or false, and then calculated 

an accuracy of wood species identification by 

the model.

To utilize macroscopic features of different 

wood species, we need to make the patch im-

ages to include at least several growth rings. 

We determined the patch size according to the 

given condition for macroscopic features of all 

wood species. In the case of the smartphone 

camera without a zoom factor, the field of view 

in 512 × 512 pixels was turned out to be a 

proper size.

3. RESULTS and DISCUSSION

3.1. Accuracy of the CNN models 

In general, the accuracy of the CNN models 

was improved by size increase of the input im-

age (Table 4, 5, and 6; Fig. 3). With image 

size = 32, average accuracies of LeNet, LeNet2, 

LeNet3, MiniVGGNet, MiniVGGNet2, and 

Species LeNet LeNet2 LeNet3 MiniVGGNet MiniVGGNet2 MiniVGGNet3

Cedar 97.1 85.4 99.5 99.9 99.7 100.0

Cypress 51.4 83.9 79.2 25.4 79.0 62.0

Korean Pine 27.3 46.7 59.7 20.6 49.2 35.7

Korean Red Pine 85.3 81.7 84.4 35.1 40.3 35.6

Larch 99.3 99.7 98.2 25.0 38.0 43.2

Average 72.1 79.5 84.2 41.2 61.2 55.3

Standard Deviation 28.2 17.6 14.5 29.7 24.2 24.3

Table 4. The accuracy (%) of the CNN models with image size = 32. The Accuracy Test Set was used for

accuracy test for automatic identification of the five Korean softwoods

Species LeNet LeNet2 LeNet3 MiniVGGNet MiniVGGNet2 MiniVGGNet3

Cedar 99.1 99.6 100.0 100.0 100.0 94.6

Cypress 83.0 93.1 99.8 90.9 95.7 92.2

Korean Pine 90.9 93.5 63.7 99.8 98.6 99.3

Korean Red Pine 97.0 96.1 96.4 76.5 87.0 82.4

Larch 92.6 94.8 98.3 81.6 78.4 80.3

Average 92.5 95.4 91.6 89.8 91.9 89.8

Standard Deviation 5.6 2.3 14.0 9.5 8.1 7.3

Table 5. The accuracy (%) of the CNN models with image size = 64. The Accuracy Test Set was used for

accuracy test for automatic identification of the five Korean softwoods
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MiniVGGNet3 were (72.1, 79.5, 84.2, 41.2, 

61.2, and 55.3%), respectively. With patch size 

= 64 and 128, they increased to (92.5, 95.4, 

91.6, 89.8, 91.9, and 89.8%), and (94.1, 97.4, 

99.3, 95.2, 97.5, and 97.5%), respectively. The 

accuracy improvement by the increase of the 

input image is related to the disappearance of 

minute details of image content during the re-

sizing process.

With the addition of layers to the original 

LeNet and MiniVGGNet, accuracy improvement 

was not apparent with image size = 32 and 64 

(Table 4 and 5). With image size = 128, im-

provement of accuracy was evident for the 

LeNet-based model, but not consistent with the 

MiniVGGNet models (Table 6).

All MiniVGGNet-based models with patch 

size = 128 showed very high average accuracy, 

but the standard deviation was greater than 3%. 

The highest accuracy (99.3 ± 0.7%) was ob-

tained by LeNet3 model with image size = 128. 

Thus, LeNet3 was considered to be the best 

CNN model for identification of the five 

Korean softwood species (Table 6).

There was no clear trend in accuracy im-

provement related to wood species, but the 

LeNet-based and MiniVGGNet-based models 

gave the best identification accuracy for differ-

ent species. With image size = 128, LeNet3 

model showed 100% accuracy for cedar, but 

MiniVGGNet3 showed 100% accuracy for cy-

press and Korean red pine (Table 6). While 

MiniVGGNet3 showed only 90.8% for Korean 

pine, LeNet3 produced greater than 98% for all 

other species. Thus, it is clear that LeNet3 was 

Species LeNet LeNet2 LeNet3 MiniVGGNet MiniVGGNet2 MiniVGGNet3

Cedar 94.9 98.7 100.0 99.1 99.3 99.9

Cypress 96.5 97.7 98.2 99.5 99.7 100.0

Korean Pine 89.3 93.4 99.0 91.2 89.9 90.8

Korean Red Pine 95.2 98.7 99.9 90.1 99.1 96.7

Larch 94.7 98.3 99.6 96.0 99.3 100.0

Average 94.1 97.4 99.3 95.2 97.5 97.5

Standard Deviation 2.5 2.0 0.7 3.9 3.8 3.6

Table 6. The accuracy (%) of the CNN models with image size = 128. The Accuracy Test Set was used for 

accuracy test for automatic identification of the five Korean softwoods

Fig. 3. Performance of CNN models for identi-

fication of five Korean softwood species. Utilizing 

bigger image size, higher accuracy is achieved. 

MiniVGGNet architecture is more sensitive than 

LeNet architecture to the changes of input image 

size for CNN.
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the best species identification CNN model for 

the five Korean softwoods. 

3.2. Effect of Input Images

Improvement of identification accuracy ac-

cording to the size of input images was appa-

rent (Fig. 3). All models showed the lowest ac-

curacy with the smallest image size (32 × 32 

pixels). When the images of 512 × 512 pixels 

were resized into 32 × 32 pixels image, most 

of the details of the images considered to be 

disappeared. No distinctive features from the 

small images were not learned to differentiate 

the wood species. By the increase of the size of 

the input image, more features remained. As a 

result, the identification accuracy was improved. 

With this fashion, bigger size of input images 

might improve accuracy more, but computa-

tional cost increases. If we collect more images 

and expand the number of classes for identi-

fication, input images might not be loaded into 

the computer memory. We need to consider 

computational cost, a number of classes, and a 

number of images in each class whether the im-

age size needs to be increased further or not. 

At the moment, the LeNet3 model produced > 

98% accuracy for all five species; image size = 

128 was considered to be sufficient for the use 

of this automatic wood species identification 

with a macroscopic image from a camera in an 

iPhone 7 smartphone.

Quality of a smartphone camera is a major 

factor to affect the accuracy of the automatic 

wood species identification. The image qualities 

of different smartphone cameras were not inves-

tigated in this study, but any smartphone with a 

decent camera module is expected to obtain im-

ages with sufficient quality of macroscopic im-

ages from a rough sawn surface of the wood. 

The illumination condition used in this study 

was controlled to produce not much of shade, 

but the image acquisition setup utilized in this 

study was straightforward to make an auxiliary 

attachment for a smartphone. With a proper 

auxiliary attachment for a given smartphone, we 

can quickly reproduce the quality of macro-

scopic images.

4. CONCLUSION

In this study, we investigated the use of deep 

learning techniques to automatically identify 

wood species of five Korean softwoods (cedar, 

cypress, Korean pine, Korean red pine, and 

larch). We built six CNN models (LeNet, 

LeNet2, LeNet3, MiniVGGNet, MiniVGGNet2, 

and MiniVGGNet3) and trained the models for 

the five species. A smartphone camera was 

used to obtain macroscopic images from rough 

sawn surfaces of the cross sections of the 

softwoods. 

The experimental results showed that the best 

accuracy (99.3%) was achieved by LeNet3 

model trained with macroscopic images cap-

tured by iPhone 7 camera. The MiniVGGNet3 

model produced 97.5% accuracy on the same 

dataset of the softwoods, but the standard devi-

ation was much larger (3.6%) than that of 

LeNet3 model (0.7%).
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We demonstrated higher than 99% accuracy 

of wood species identification with a deep 

CNN model with four convolutional layers. The 

result in this study proved that a fast and accu-

rate automatic wood species identification sys-

tem could be developed by utilizing deep CNN 

models. The weights produced by the CNN 

models were small enough to be installed on a 

mobile device such as a smartphone. Deploying 

a mobile device with an automatic wood spe-

cies identification capability can relieve the is-

sues of slow process to obtain an accurate 

wood species identification due to lack of 

well-trained field agents, which causes the de-

lay of logistics.
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