Table 3.
A table summary of MiniVGGNet architectures for 32 × 32 × 3 input image. To build MiniVGGNet2 and MiniVGGNet3, one layer or two layers were added to the MiniVGGNet architecture, respectively

Layer Type Output Size Filter Size/Stride
INPUT IMAGE 32 × 32 × 3
CONV 32 × 32 × 32 3 × 3 × 32
ACT 32 × 32 × 32
BN 32 × 32 × 32
CONV 32 × 32 × 32 3 × 3 × 32
ACT 32 × 32 × 32
BN 32 × 32 × 32
POOL 16 × 16 × 32 2 × 2
DROPOUT 16 × 16 × 32
CONV 16 × 16 × 64 3 × 3 × 64
ACT 16 × 16 × 64
BN 16 × 16 × 64
CONV 16 × 16 × 64 3 × 3 × 64
ACT 16 × 16 × 64
BN 16 × 16 × 64
POOL 8 × 8 × 64 2 × 2
DROPOUT 8 × 8 × 64
FC 512
ACT 512
BN 512
DROPOUT 512
FC 5
SOFTMAX 5